Published on Jun 05, 2023
Nanofog is a highly advanced nanotechnology, which the Technocratic Union has developed as the ultimate multi-purpose tool. It is a user-friendly, completely programmable collection of avogadro (6 x1023) numbers of nanomachines that can form a vast range of machinery, from wristwatches to spaceships.
It can simulate any material from gas, liquid, and solid, and it can even be used in sufficient quantities to implement the ultimate in virtual reality. ITx researchers suggest that more complex applications could include uploading human minds into planet-sized collections of Utility Fog. Active, polymorphic material, Utility Fog can be designed as a conglomeration of 100-micron robotic cells called foglets. Such robots could be built with the techniques of molecular nanotechnology. Controllers with processing capabilities of 1000 MIPS per cubic micron, and electric motors with power densities of one milliwatt per cubic micron are assumed. Utility Fog should be capable of simulating most everyday materials, dynamically changing its form and proper ties, and forms a substrate for an integrated virtual reality and telerobotics. This paper will examine the concept, and explore some of the applications of this material.Imagine a microscopic robot. It has a body about the size of a human cell and 12 arms sticking out in all directions.
A bucketful of such robots might form a "robot crystal" by linking their arms up into a lattice structure. Now take a room, with people, furniture, and other objects in it it's still mostly empty air. Fill the air completely full of robots. With the right programming, the robots can exert any force in any direction on the surface of any object. They can support the object, so that it apparently floats in the air. They can support a person, applying the same pressures to the seat of the pants that a chair would. They can exert the same resisting forces that elbows and fingertips would receive from the arms and back of the chair. A program running in the Utility Fog can thus simulate the physical existence of an object.